Respuesta :

Using the ideal gas law PV =nRTPV=nRT , we find that the pressure will be P =\frac{nRT}{V}P=

V

nRT

 . Then, we'll substitute and find the pressure, using T = -25 °C = 248.15 K and R = 0.0821 \frac{atm\cdot L}{mol \cdot K}

mol⋅K

atm⋅L

 :

P =\frac{nRT}{V} = \frac{(0.33\,\cancel{mol})(0.0821\frac{atm\cdot \cancel{L}}{\cancel{mol \cdot K}})(248.15\,\cancel{K})}{15.0\,\cancel{L}} = 0.4482\,atmP=

V

nRT

=

15.0

L

(0.33

mol

)(0.0821

mol⋅K

atm⋅

L

)(248.15

K

)

=0.4482atm

In conclusion, the pressure of this gas is P=0.4482 atm.

Reference:

Chang, R. (2010). Chemistry. McGraw-Hill, New York.