A garden hose with a small puncture is stretched horizontally along the ground. The hose is attached to an open water faucet at one end and a closed nozzle at the other end. As you might suspect, water pressure builds up and water squirts vertically out of the puncture to a height of 0.73 m. Determine the pressure inside the hose. (Enter your answer to the nearest 1000 Pa.) 7161.3 If you use the subscripts "1" and "2" respectively to represent a point in the hose before the leak and the site of the leak, how does h compare to h2? How does v1 compare to v2? What is the value of the pressure at the site of the puncture?

Respuesta :

Answer:

The pressure inside the hose 7000 Pa to the nearest 1000 Pa.

[tex]h₁ = \frac{\frac{128μLQ}{πD^{4} } + ρgh₂}{ρg}[/tex]

[tex]V_{1} =V_{2}[/tex]

The pressure at the site of the puncture is [tex]P₂ =7161.3 Pa[/tex]

Explanation:

According to Poiseuille's law, [tex]P_{1} - P_{2}  = \frac{128μLQ}{πD^{4} }[/tex]

Where [tex]P_{1}[/tex] is the pressure at a point [tex]1[/tex] before the leak, [tex]P_{2}[/tex] is the pressure at the point of  the leak [tex]2[/tex], μ = dynamic viscosity, L = the distance between points [tex]1[/tex] and [tex]2[/tex], Q = flow rate, D = the diameter of the garden hose.

Also,  from the equation [tex]P =ρgh[/tex], the equations [tex]h₁ = \frac{P₁} {ρg}[/tex] and [tex]h₂ = \frac{P₂} {ρg}[/tex] can be derived.

Combining Poseuille's law with the above, we get [tex]h₁ - ρgh₂ =  \frac{128μLQ}{πD^{4} }[/tex]

[tex]h₁ = \frac{\frac{128μLQ}{πD^{4} } + ρgh₂}{ρg}[/tex]

[tex]V =\frac{Q}{A}[/tex]

Since the hose has a uniform diameter, the nozzle at the end is closed and neither point [tex]1[/tex] nor [tex]2[/tex] lie after the puncture,

[tex]V_{1} =V_{2}[/tex]

The pressure at the site of the puncture [tex]P₂ =ρgh₂[/tex]

[tex]P₂ =1kgm⁻³ ×9.81ms⁻¹×0.73m[/tex]

[tex]P₂ =7161.3 Pa[/tex]