Answer:
4.55%
Step-by-step explanation:
Data provided in the question:
Given,
Number of samples of capsules, n = 25
mean amount of ingredient, μ = 150 mg
Standard deviation, σ = 5
Now,
[tex]\bar{x}_1=148\ mg[/tex]
z-value will be
⇒ z₁ = [tex]\frac{\bar{x}_1-\mu}{(\frac{\sigma}{\sqrt n})}[/tex]
or
⇒ z₁ = [tex]\frac{148-150}{(\frac{5}{\sqrt{25}})}[/tex]
or
⇒ z₁ = - 2
similarly,
for [tex]\bar{x}_2=152\ mg[/tex]
z-value will be
⇒ z₂ = [tex]\frac{\bar{x}_2-\mu}{(\frac{\sigma}{\sqrt n})}[/tex]
or
⇒ z₂ = [tex]\frac{152-150}{(\frac{5}{\sqrt{25}})}[/tex]
or
⇒ z₂ = 2
Now,
P( -2 < x < 2) = P( z < 2) - P(z < -2)
from the z-value vs P table, we have
= 0.9772498 - 0.0227501
= 0.9545
therefore,
Probability that the production is stopped = 1 - 0.9545
⇒ 0.0455 or
⇒ 0.0455 × 100%
= 4.55%