Respuesta :
Slope = (10 - 5) / (2 + 3) = 1
Therefore, y = x + b
At point (2, 10)
10 = 2 + b
b = 8
Therefore : y = x + 8
Answer: y = x + 8 (Answer A)
Therefore, y = x + b
At point (2, 10)
10 = 2 + b
b = 8
Therefore : y = x + 8
Answer: y = x + 8 (Answer A)
Start by finding the slope using the slope "formula" [tex] \frac{y_2-y_1}{x_2-x_1} [/tex]:
[tex]x_2=2 \newline y_2=10 \newline \newline x_1=-3 \newline y_1=5 \newline \newline \frac{10-5}{2-(-3)}=1 [/tex]
Now, write y=mx+b, substituting the value you found above (the slope) for m:
[tex]y=(1)x+b \text{ or } y=x+b [/tex]
Now, substitute one of the given points for x and y to solve for b. Let's use (2,10):
[tex]y=x+b \newline 10=2+b \newline b=8[/tex]
Now, put it all together:
[tex]y=x+8[/tex]
That's the equation of the line!
[tex]x_2=2 \newline y_2=10 \newline \newline x_1=-3 \newline y_1=5 \newline \newline \frac{10-5}{2-(-3)}=1 [/tex]
Now, write y=mx+b, substituting the value you found above (the slope) for m:
[tex]y=(1)x+b \text{ or } y=x+b [/tex]
Now, substitute one of the given points for x and y to solve for b. Let's use (2,10):
[tex]y=x+b \newline 10=2+b \newline b=8[/tex]
Now, put it all together:
[tex]y=x+8[/tex]
That's the equation of the line!