Respuesta :
Answer is: concentration of hydrogen ions are 4·10⁻¹¹ M.
Chemical reaction: C₂H₅NH₂ + H₂O ⇄ C₂H₅NH₃⁺ + OH⁻.
Kb(C₂H₅NH₂) = 6,4·10⁻⁴.
c(C₂H₅NH₂) = 1,2·10⁻² M = 0,012 M.
[C₂H₅NH₃⁺] = [OH⁻] = x.
[C₂H₅NH₂] = 0,012 M - x.
Kb = [C₂H₅NH₃⁺] · [OH⁻] / [C₂H₅NH₂].
6,4·10⁻⁴ = x² / (0,012 M - x).
Solve quadratic equation: x = [OH⁻] = 0,0025 M.
[OH⁻] · [H⁺] = 10⁻¹⁴.
[H⁺] = 10⁻¹⁴ ÷ 0,0025 M = 4·10⁻¹¹ M.
Chemical reaction: C₂H₅NH₂ + H₂O ⇄ C₂H₅NH₃⁺ + OH⁻.
Kb(C₂H₅NH₂) = 6,4·10⁻⁴.
c(C₂H₅NH₂) = 1,2·10⁻² M = 0,012 M.
[C₂H₅NH₃⁺] = [OH⁻] = x.
[C₂H₅NH₂] = 0,012 M - x.
Kb = [C₂H₅NH₃⁺] · [OH⁻] / [C₂H₅NH₂].
6,4·10⁻⁴ = x² / (0,012 M - x).
Solve quadratic equation: x = [OH⁻] = 0,0025 M.
[OH⁻] · [H⁺] = 10⁻¹⁴.
[H⁺] = 10⁻¹⁴ ÷ 0,0025 M = 4·10⁻¹¹ M.
[H⁺]=3.608.10⁻¹²
Further explanation
Weak acid ionization reaction occurs partially (not ionizing perfectly as in strong acids)
The ionization reaction of a weak acid is an equilibrium reaction
HA (aq) ---> H⁺ (aq) + A⁻ (aq)
The equilibrium constant for acid ionization is called the acid ionization constant, which is symbolized by Ka
The values for the weak acid reactions above:
[tex]\rm Ka=\dfrac{[H][A^-]}{[HA]}[/tex]
The greater the Ka, the stronger the acid, which means the reaction to the right is also greater
Where Kb is the base ionization constant
LOH (aq) ---> L⁺ (aq) + OH⁻ (aq)
[tex]\rm Kb=\dfrac{[L][OH^-]}{[LOH]}[/tex]
Kb of Ethylamine (C₂H₅NH₂) : 6.4.10⁻⁴
The ethylamine ionization reactions occur in water as follows:
C₂H₅NH₂ + H₂O ⇒ C₂H₅NH₃⁺ + OH⁻
with a Kb value:
[tex]\rm Kb=\dfrac{[C_2H_5NH_3^+][OH^-]}{[C_2H_5NH_2]}[/tex]
for example x = number of moles / concentration that reacts
Initial concentration of Ethylamine (C₂H₅NH₂) : 1.2.10⁻²
Concentration at equilibrium = 1.2.10⁻² -x
Initial concentration of C₂H₅NH₃ = 0
Concentration at equilibrium = x
Initial concentration OH⁻ = 0
Concentration at equilibrium = x
so the value of Kb =
[tex]\rm Kb=\dfrac{[x][x]}{[1.2.10^{-2}-x]}\\\\assumption\:x=so\:small\:then\\\\6.4.10^{-4}=\dfrac{x^2}{1.2.10^{-2}}\\\\x^2=7.68.10^{-6}\\\\x=2.771.10^{-3}[/tex]
x = [OH⁻] = 2.771.10⁻³
Ka x Kb = [H⁺] [OH-]
a water equilibrium constant value (Kw) of 1.10⁻¹⁴ at 25 °C
Ka x Kb = [H +] [OH-] = 1.10⁻¹⁴
1.10⁻¹⁴ = [H⁺] . 2.771.10⁻³
[H⁺]=3.608.10⁻¹²
Learn more
an equilibrium constant https://brainly.com/question/9173805
https://brainly.com/question/1109930
Calculate the value of the equilibrium constant, Kc
https://brainly.com/question/3612827
Concentration of hi at equilibrium
https://brainly.com/question/8962129