Respuesta :
1. By the Altitud Rule, you have:
Segment1/Altitud=Segment 2/Altitud
2. The ratio is 1:2, then:
Segment1=2x
Segment2=1x
Segment2=x
Altitud=8
3. When you apply the Altitud Rule, you obtain:
Segment1/Altitud=Segment 2/Altitud
2x/8=8/x
4. When you clear the "x", you have:
(2x)(x)=(8)(8)
2x²=64
x²=64/2
x²=32
x=√32
x=4√2
5. Then:
2x=2(4√2)=8√2
6. Therefore, the lenght of the hypotenuse is:
h=4√2+8√2
h=12√2
h=16.97
Segment1/Altitud=Segment 2/Altitud
2. The ratio is 1:2, then:
Segment1=2x
Segment2=1x
Segment2=x
Altitud=8
3. When you apply the Altitud Rule, you obtain:
Segment1/Altitud=Segment 2/Altitud
2x/8=8/x
4. When you clear the "x", you have:
(2x)(x)=(8)(8)
2x²=64
x²=64/2
x²=32
x=√32
x=4√2
5. Then:
2x=2(4√2)=8√2
6. Therefore, the lenght of the hypotenuse is:
h=4√2+8√2
h=12√2
h=16.97
The hypotenuse is 17.1 inches long
Given that the scale ratio is 1 : 2.
This means that:
Segment 1 : Segment 2 = 1 : 2
This gives
Segment 1 : Segment 2 = x : 2x
By comparison,
Segment 1 = x
Segment = 2x
Using the Altitude rule, x is then calculated as:
[tex]\frac{Segment\ 2}{8} = \frac{8}{Segment\ 1}[/tex]
Substitute known values
[tex]\frac{2x}{8} = \frac{8}{x}[/tex]
Cross multiply
[tex]2x^2 = 64[/tex]
Divide through by 2
[tex]x^2 = 32[/tex]
Take the square root of both sides
[tex]x = 5.7[/tex]
The length of the hypotenuse (h) is then calculated as:
[tex]h =x + 2x[/tex]
[tex]h =3x[/tex]
[tex]h =3 * 5.7[/tex]
[tex]h =17.1[/tex]
Hence, the hypotenuse is 17.1 inches long
Read more about right triangles at:
https://brainly.com/question/2437195