Respuesta :

Answer:

[tex]y=\frac{\sqrt{x-1} }{4}[/tex]

Step-by-step explanation:

The given equation is

[tex]y=16x^2+1[/tex]

For this function to have an inverse, we must restrict the domain, say [tex]x\ge0[/tex]

We interchange x and y to get,

[tex]x=16y^2+1[/tex]


We now make y the subject to get;


[tex]x-1=16y^2[/tex]


[tex]x-1=16y^2[/tex]

We divide through by 16 to get;


[tex]\frac{x-1}{16}=y^2[/tex]


We now take the square root of both sides to get;

[tex]\pm \sqrt{\frac{x-1}{16}}=y[/tex]


[tex]y=\pm \frac{\sqrt{x-1} }{4}[/tex]


Since  [tex]x\ge 0[/tex], the inverse function is


[tex]y=\frac{\sqrt{x-1} }{4}[/tex]


Answer:

[tex]y=\frac{(+/-)\sqrt{x-1} }{4}[/tex] (D)

Step-by-step explanation:

Edge 2020

Have a nice day :) <3