Respuesta :

x=3 because
[tex] \frac{3}{2} \times 3 = \frac{9}{2} [/tex]
[tex] \frac{9}{2} + \frac{7}{2} = 8[/tex]
And
[tex] {2}^{3} = 8[/tex]
So the equation is balanced

Answer:

Option - 2, The solution of the equation is at x=3.

Step-by-step explanation:

Given : Equation [tex]\frac{3}{2}x+\frac{7}{2}=2^x[/tex]

To find : The point which satisfy the equation?

Solution :

To find the point we put all the given points one by one which satisfy the equation is the required point.

[tex]\frac{3}{2}x+\frac{7}{2}=2^x[/tex]

1) Put x=1,

[tex]\frac{3}{2}(1)+\frac{7}{2}=2^1[/tex]

[tex]\frac{3+7}{2}=2[/tex]

[tex]\frac{10}{2}=2[/tex]

[tex]5\neq2[/tex]

x=1 is not a point.

2) Put x=3,

[tex]\frac{3}{2}(3)+\frac{7}{2}=2^3[/tex]

[tex]\frac{9+7}{2}=8[/tex]

[tex]\frac{16}{2}=8[/tex]

[tex]8=8[/tex]

x=3 is a point satisfying equation.

3) Put x=5,

[tex]\frac{3}{2}(5)+\frac{7}{2}=2^5[/tex]

[tex]\frac{15+7}{2}=32[/tex]

[tex]\frac{22}{2}=32[/tex]

[tex]11\neq32[/tex]

x=5 is not a point.

4) Put x=8,

[tex]\frac{3}{2}(8)+\frac{7}{2}=2^8[/tex]

[tex]\frac{24+7}{2}=256[/tex]

[tex]\frac{31}{2}=256[/tex]

[tex]15.5\neq256[/tex]

x=8 is not a point.

Therefore, The solution of the equation is at x=3.