Answer:
0.0187 eV
Explanation:
Given that:
diameter of the hydrogen gas (λ) = 1.48 ×10⁻¹⁰ m'
mass of the hydrogen gas = 3.35 ×10⁻²⁷ kg
We need to determine the momentum first before calculating the kinetic energy.
So momentum of the hydrogen gas molecule is written as;
[tex]p =\frac{h}{ \lambda}[/tex]
[tex]p = \frac{96.626*10^{-34}J.s}{1.48*10^{-10}m}[/tex]
[tex]p=4.477*10^{-24} kg.m/s[/tex]
NOW, the kinetic energy of the hydrogen gas molecule is calculated as follows by using the formula:
[tex]k_o = \frac{p^2}{2m}[/tex]
[tex]k_o =\frac{(4.477*10^{-24}kg.m/s)^2}{2(3.35*10^-{27})kg}[/tex]
[tex]k_o=2.9916*10^{-21}J(\frac{1eV}{1.6*10^{-19}J})[/tex]
[tex]K_o=0.0187eV[/tex]