contestada

If R1 = 6 Ω, R2 = 8 Ω, R3 = 2 Ω, ε1 = 4 V, and ε2 = 14 V, what is the current in R2?

Respuesta :

We need to formulate an equation using Kirchhoff's Law and the 2 equations formed are listed below:
-4i1+10i2=14 and 7i1-8i2=4
Since we have two equations and two unknowns, we can now solve for current 1(i1) and current 2 (i2). Then we have i1=2 amperes and i2=3 amperes.
Therefore, the current in R2 is 1 ampere.

The current in the resistor [tex]R_2[/tex] is [tex]\boxed{1\text{ A}}[/tex].

Further Explanation:

There are two rectangular loops in the given circuit.

To obtain the current in both the loops we will apply Kirchhoff’s voltage law.

Given:

The resistance of first resistor is [tex]6[/tex] Ω.

The resistance of second resistor is [tex]8[/tex] Ω.

The resistance of third resistor is [tex]2[/tex] Ω.

The voltage of first cell is [tex]4\text{ V}[/tex].

The voltage of second cell is [tex]14\text{ V}[/tex].

Concept:

Kirchhoff’s law in left side loop:

[tex]i_1R_1+(i_1-i_2)R_2=\epsilon_1[/tex]

Substitute [tex]6[/tex] Ω for [tex]R_1[/tex], [tex]8[/tex] Ω for [tex]R_2[/tex] and [tex]4\text{ V}[/tex] for [tex]\epsilon_1[/tex] in above equation and simplify.

[tex]7i_1-4i_2=2[/tex]                                                                                  …… (I)

Kirchhoff’s law in right side loop:

[tex](i_2-i_1)R_2+i_2R_3=\epsilon_2[/tex]  

Substitute [tex]8[/tex] Ω for [tex]R_2[/tex], [tex]2[/tex] Ω for [tex]R_3[/tex] and [tex]14\text{ V}[/tex] for [tex]\epsilon_2[/tex] in above equation and simplify.

[tex]-4i_1+5i_2=7[/tex]                                                                               …… (II)

Multiply equation (I) with [tex]5[/tex]

[tex]35i_1-20i_2=10[/tex]                                                                          …… (III)

Multiply equation (II) with [tex]4[/tex]

[tex]-16i_1+20i_2=28[/tex]                                                                       …… (IV)

On adding equation (III) and equation (IV), we get

[tex]i_1=2\text{ A}[/tex]

 

Substitute [tex]2\text{ A}[/tex] for [tex]i_1[/tex] in equation (I) and rearrange for [tex]i_2[/tex] .

[tex]i_2=3\text{ A}[/tex]

Current in second resistor:

[tex]\begin{aligned}I&=|i_1-i_2|\\&=1\text{ A}\end{aligned}[/tex]  

Thus, the current in the resistor [tex]R_2[/tex] is [tex]\boxed{1\text{ A}}[/tex].

Learn more:

1. Threshold frequency of photoelectric surface: https://brainly.com/question/6953278

2. Find the odd one out for lever: https://brainly.com/question/1073452

3. Volume of gas after expansion: https://brainly.com/question/9979757

Answer Details:

Grade: College

Subject: Physics

Chapter: Electricity

Keywords:

R1, R2, R3, E1, E2, current, Kirchhoff’s, voltage, loop, circuit, resistor, 6 ohm, 2 ohm, 8 ohm, 4 volt, 14 volt and law.

Ver imagen adityaso