Respuesta :

Solution

We are given the pair of simultaneous equation

[tex]\begin{gathered} 3x-y=-5\ldots\ldots\ldots\ldots\ldots(1) \\ 6x-2y=8\ldots\ldots\ldots\ldots\ldots\ldots(2) \end{gathered}[/tex]

we solve using elimination method

equation (1) x 2

[tex]\begin{gathered} 6x-2y=-10\ldots\ldots\ldots\ldots\ldots(1) \\ 6x-2y=8\ldots\ldots\ldots\ldots\ldots\ldots(2) \end{gathered}[/tex]

Equation (2) - equation (1)

We have

[tex]\begin{gathered} (6x-6x)+(-2y+2y)=8-(-10) \\ 0=18 \end{gathered}[/tex]

Which is impossible because 0 (zero) can never be equal to 18

Therefore, the simultaneous is not consistent or it degenerate and thus, there is no solution