Solution
We are given the pair of simultaneous equation
[tex]\begin{gathered} 3x-y=-5\ldots\ldots\ldots\ldots\ldots(1) \\ 6x-2y=8\ldots\ldots\ldots\ldots\ldots\ldots(2) \end{gathered}[/tex]we solve using elimination method
equation (1) x 2
[tex]\begin{gathered} 6x-2y=-10\ldots\ldots\ldots\ldots\ldots(1) \\ 6x-2y=8\ldots\ldots\ldots\ldots\ldots\ldots(2) \end{gathered}[/tex]Equation (2) - equation (1)
We have
[tex]\begin{gathered} (6x-6x)+(-2y+2y)=8-(-10) \\ 0=18 \end{gathered}[/tex]Which is impossible because 0 (zero) can never be equal to 18
Therefore, the simultaneous is not consistent or it degenerate and thus, there is no solution