Respuesta :

lucic

Answer:

(1,1), (-3,4)

Step-by-step explanation:

Given  x + 2y ≥ 3

Rewrite the inequality as;

x + 2y = 3

Form a table for values of x and y

x        y

3        0

1         1

-3        3

Plot the points on a Cartesian plane

From the graph, the points are; (1,1), (-3,4)

Ver imagen lucic

For this case we have the following inequality:

[tex]x + 2y \geq3[/tex]

We substitute each of the points and see which one is fulfilled:

Point A: (1,1)

[tex]1 + 2 (1) \geq3\\1 + 2 \geq3\\3 \geq3[/tex]

Is fulfilled!

Point B: (-3,4)

[tex]-3 + 2 (4) \geq3\\-3 + 8 \geq3\\5 \geq3[/tex]

Is fulfilled!

Point C: (-2,2)

[tex]-2 + 2 (2) \geq3\\-2 + 4 \geq3\\2 \geq3[/tex]

It is not fulfilled!

Point D: (5, -2)

[tex]5 + 2 (-2) \geq3\\5-4 \geq3\\1 \geq3[/tex]

It is not fulfilled!

Answer:

Option A and B