In this problem, we have an exponential decay function of the form
[tex]y=a(1-r)^x[/tex]where
y is the area in km2
x is the number of years
a=3,800 km2 (initial value)
r=6.25%=6.25/100=0.0625
substitute given values
[tex]\begin{gathered} y=3,800(1-0.0625)^x \\ y=3,800(0.9375)^x \end{gathered}[/tex]For x=12 years
substitute
[tex]\begin{gathered} y=3,800(0.9375)^{12} \\ y=1,752\text{ km}^2 \end{gathered}[/tex]therefore