19 trees should be planted to maximize the total
From the question, we have the following parameters:
Number of apples, x = 18
Yield, f(x) = 80 per tree
When the number of apple trees is increased (say by x).
We have:
Trees = 18 + x
The yield decreases by four apples per tree.
So, we have
Yield = 80 - 4x
So, the profit function is
P(x) = Apples * Yield
This gives
P(x) = (18 + x) *(80 - 4x)
Expand the bracket
P(x) = 1440 - 72x + 80x - 4x^2
Differentiate the function
P'(x) = 0 - 72 + 80 - 8x
Evaluate the like terms
P'(x) = 8 - 8x
Set P'(x) to 0
8 - 8x = 0
Divide through by 8
1 - x = 0
Solve for x
x = 1
Recall that:
Trees = 18 + x
So, we have
Trees = 18 + 1
Evaluate
Trees = 19
Hence, 19 trees should be planted to maximize the total
Read more about quadratic functions at:
https://brainly.com/question/12120831
#SPJ1