Respuesta :

Answer:

[tex]\frac{7}{6} \pi\ radians[/tex]

Step-by-step explanation:

Conversion between Degree and Radian:

Bear in mind that 1 whole circle has 360°, which is same as 2π radians. Therefore:

Converting x° to radian:

degree : radian = degree : radian

360° : 2π rad = x° : radian

180° : π rad = x° : radian

[tex]\boxed{radian=\frac{x^o}{180^o}\times\pi\ rad }[/tex]

Converting x rad to degree:

degree : radian = degree : radian

360° : 2π rad = degree : x rad

180° : π rad = degree : x rad

[tex]\boxed{degree=\frac{x\ rad}{\pi\ rad}\times180^o}[/tex]

Given:

Interval = [π, 3π/2]

             [tex]\displaystyle=\left[\left(\frac{\pi}{\pi} \times180^o\right),\left(\frac{3\pi}{2\pi} \times180^o\right)\right][/tex]

             [tex]=[180^o,270^o][/tex] → within Quadrant 3 where y-value is negative

                                   → sin value is also negative

[tex]\displaystyle sin\ s=-\frac{1}{2}[/tex]

[tex]\displaystyle\frac{y}{r} =\frac{-1}{2}[/tex]

The angle that meet the y : r ratio is 30° beyond the negative x-axis (see the picture).

The total angle start from positive x-axis = 180° + 30° = 210°

Convert into radian:

[tex]radian=\frac{210^o}{180^o}\times\pi\ rad[/tex]

           [tex]=\frac{7}{6} \pi\ radians[/tex]

Ver imagen karmenchong