Whoever answers correctly gets BRAINLIEST and 100 points

A regular-size box of crackers measures 214 inches by 912 inches by 14 inches. The manufacturer also sells a snack-size box that has a volume that is 15 of the volume of the regular-size box.

What is the volume of the snack-size box of crackers?

Enter your answer as a mixed number in simplest form by filling in the boxes.
$

​ in³

Respuesta :

Answer:

[tex]\sf 59 \frac{17}{20} \: in^3[/tex]

Step-by-step explanation:

Regular-size box of crackers

Dimensions:  [tex]\sf 2 \frac{1}{4} \: in \times 9 \frac{1}{2}\:in \times 14\: in[/tex]

Snack-size box of crackers

Volume = [tex]\sf \frac{1}{5}[/tex] of the volume of a regular-size box

To calculate the volume of the snack-size box of crackers, calculate the volume of the regular-size box then multiply it by [tex]\sf \frac{1}{5}[/tex].

[tex]\begin{aligned}\textsf{Volume of a rectangular prism} & = \textsf{width x length x height}\\\\\implies \textsf{Volume of regular-size box} & = \sf 9 \frac{1}{2} \times 14 \times 2 \frac{1}{4}\\\\& = \sf \dfrac{19}{2} \times 14 \times \dfrac{9}{4}\\\\& = \sf \dfrac{19 \times 14 \times 9}{2 \times 4}\\\\& = \sf \dfrac{1197}{4}\: in^3\end{aligned}[/tex]

[tex]\begin{aligned}\implies \textsf{Volume of snack-size box} & = \sf \dfrac{1}{5} \times \textsf{volume of regular-size box}\\\\& = \sf \dfrac{1}{5} \times \dfrac{1197}{4}\\\\& = \sf \dfrac{1 \times 1197}{5 \times 4}\\\\& = \sf \dfrac{1197}{20}\\\\& = \sf 59 \dfrac{17}{20}\: in^3\end{aligned}[/tex]

Therefore, the volume of the snack-size box is [tex]\sf 59 \frac{17}{20} \: in^3[/tex]