Respuesta :
Answer:
[tex]\sf 59 \frac{17}{20} \: in^3[/tex]
Step-by-step explanation:
Regular-size box of crackers
Dimensions: [tex]\sf 2 \frac{1}{4} \: in \times 9 \frac{1}{2}\:in \times 14\: in[/tex]
Snack-size box of crackers
Volume = [tex]\sf \frac{1}{5}[/tex] of the volume of a regular-size box
To calculate the volume of the snack-size box of crackers, calculate the volume of the regular-size box then multiply it by [tex]\sf \frac{1}{5}[/tex].
[tex]\begin{aligned}\textsf{Volume of a rectangular prism} & = \textsf{width x length x height}\\\\\implies \textsf{Volume of regular-size box} & = \sf 9 \frac{1}{2} \times 14 \times 2 \frac{1}{4}\\\\& = \sf \dfrac{19}{2} \times 14 \times \dfrac{9}{4}\\\\& = \sf \dfrac{19 \times 14 \times 9}{2 \times 4}\\\\& = \sf \dfrac{1197}{4}\: in^3\end{aligned}[/tex]
[tex]\begin{aligned}\implies \textsf{Volume of snack-size box} & = \sf \dfrac{1}{5} \times \textsf{volume of regular-size box}\\\\& = \sf \dfrac{1}{5} \times \dfrac{1197}{4}\\\\& = \sf \dfrac{1 \times 1197}{5 \times 4}\\\\& = \sf \dfrac{1197}{20}\\\\& = \sf 59 \dfrac{17}{20}\: in^3\end{aligned}[/tex]
Therefore, the volume of the snack-size box is [tex]\sf 59 \frac{17}{20} \: in^3[/tex]