Respuesta :

[tex]\cos\left(x+\dfrac\pi2\right)=\cos x\cos\dfrac\pi2-\sin x\sin\dfrac\pi2=0\cos x-1\sin x=-\sin x[/tex]

via the angle sum identity for cosine.

Answer with explanation:

We are asked to prove the identity:

         [tex]\cos (x+\dfrac{\pi}{2})=-\sin x[/tex]

We know that:

[tex]\cos (A+B)=\cos A\cos B-\sin A\sin B[/tex]

Here we have:

[tex]A=x\ and\ B=\dfrac{\pi}{2}[/tex]

Hence,

[tex]\cos (x+\dfrac{\pi}{2})=\cos x\cos (\dfrac{\pi}{2})-\sin x\sin (\dfrac{\pi}{2})[/tex]

We know that:

[tex]\cos \dfrac{\pi}{2}=0\\\\and\\\\\sin \dfrac{\pi}{2}=1[/tex]

Hence, we have:

[tex]\cos (x+\dfrac{\pi}{2})=0-\sin x\\\\i.e.\\\\\cos (x+\dfrac{\pi}{2})=-\sin x[/tex]