Respuesta :
Answer: See below
Step-by-step explanation:
The function of the seat’s height from the ground level is given as,
[tex]h(t)=-1.1 \cos \left(\frac{2 \pi}{3} t\right)+3.1[/tex]
Here, t denotes the time.
(a) The height will be maximum or minimum when the derivative of the function of height is equal to zero.
[tex]\begin{aligned}h^{\prime}(t) &=0 \\\frac{d}{d t}\left(-1.1 \cos \left(\frac{2 \pi}{3} t\right)+3.1\right) &=0 \\-1.1 \times \frac{2 \pi}{3}\left(-\sin \left(\frac{2 \pi}{3} t\right)\right) &=0 \\t &=0,1.5\end{aligned}[/tex]
The height of the seat at time t = 0 s can be determined as,
[tex]\begin{aligned}h(0) &=-1.1 \cos \left(\frac{2 \pi}{3}(0)\right)+3.1 \\&=2 \mathrm{ft}\end{aligned}[/tex]
Therefore, the maximum height of the swing is 4.2 ft and the minimum height of the swing is 2 ft.
(b) The height of the swing is given as,
[tex]\begin{aligned}h &=3 \mathrm{ft} \\-1.1 \cos \left(\frac{2 \pi}{3} t\right)+3.1 &=3 \\t &=0.7 \mathrm{~s}\end{aligned}[/tex]
Therefore, the first time after t = 0 s that the swing’s height of 3 ft is 0.7 s.
(c) The height of the swing is given as,
[tex]\begin{aligned}h &=3 \mathrm{ft} \\-1.1 \cos \left(\frac{2 \pi}{3} t\right)+3.1 &=3 \\\frac{2 \pi}{3} t &=1.47976+2 \pi \\t &=3.7 \mathrm{~s}\end{aligned}[/tex]
Therefore, the second time after t = 0 s that the swing’s height of 3 ft is 3.7 s.