Respuesta :

Answer:

(3x + 1) • (3x - 1)

Step-by-step explanation:

Step by Step Solution

More Icon

STEP

1

:

Equation at the end of step 1

3[tex]{}^{2}[/tex]x[tex]{}^{2}[/tex] - 1

STEP

2

:

Trying to factor as a Difference of Squares:

2.1 Factoring: 9x[tex]{}^{2}[/tex]-1

Theory : A difference of two perfect squares, A[tex]{}^{2}[/tex] - B[tex]{}^{2}[/tex] can be factored into (A+B) • (A-B)

Proof : (A+B) • (A-B) =

A[tex]{}^{2}[/tex] - AB + BA - B2 =

A[tex]{}^{2} [/tex]- AB + AB - B2 =

A[tex]{}^{2}[/tex] - B2

Note : AB = BA is the commutative property of multiplication.

Note : - AB + AB equals zero and is therefore eliminated from the expression.

Check : 9 is the square of 3

Check : 1 is the square of 1

Check : x[tex]{}^{2}[/tex] is the square of x1

Factorization is : (3x + 1) • (3x - 1)

Final result :

(3x + 1) • (3x - 1)