Respuesta :

we have

[tex]y=x^{2}-6x+1[/tex]

this is the equation of a vertical parabola open upward

Convert into vertex form

[tex]y-1=x^{2}-6x[/tex]

[tex]y-1+9=x^{2}-6x+9[/tex]

[tex]y+8=(x-3)^{2}[/tex]

[tex]y=(x-3)^{2}-8[/tex]

The vertex is the point [tex](3,-8)[/tex] ----> is a minimum

The range of the function is the interval--------> [-8,∞)

that means------> all real numbers greater than or equal to [tex]-8[/tex]

The domain of the function is the interval-----> (-∞,∞)

that means------> all real numbers

therefore

the answer is the option

All real numbers

see the attached figure to better understand the problem

Ver imagen calculista

Answer:

all real numbers :)