Respuesta :

Answer:

[tex]y=2x^2+1[/tex]

Step-by-step explanation:

The general equation for a parabola in vertex form is the following:

[tex]y=a(x-h)^2+k[/tex]

Where ([tex]h,k[/tex]) is the parabola's vertex and (a) is the stretch and compression factor. As one can see in the given graph, the parabola has a vertex at (0, 1), moreover, it passes through the point (1, 3). Substitute these points into the equation for the parabole, and simplify,

[tex]y=a(x-h)^2+k[/tex]

Vertex: (0, 1)

[tex]y=a(x-0)^2+1[/tex]

A point on the parabola: (1, 3)

[tex]3=a(1-0)^2+1[/tex]

[tex]3=a1+1\\3 = a + 1\\[/tex]

Inverse operations,

[tex]3=a+1[/tex]

[tex]2 = a[/tex]

Substitute back into the original expression:

[tex]y=a(x-h)^2+k[/tex]

[tex]y=2(x-0)^2+1[/tex]

Simplify to put in standard form:

[tex]y=2(x-0)^2+1[/tex]

[tex]y=2(x)^2+1[/tex]

[tex]y=2x^2+1[/tex]