Answer:
Solution given:
Let there be a point P(x, y) equidistant from
A(-3, 2) and B(0,4),
so PA = PB,
[tex]\sqrt{(x+3)²+(y-2)²}=\sqrt{(x-0)²+(y-4)²}[/tex]
squaring both side
[tex](\sqrt{(x+3)²+(y-2)²})^{2}=(\sqrt{(x-0)²+(y-4)²})²[/tex]
x²+6x+9+y²-4y+4=x²+y²-8y+16
x²+6x+y²-4y-x²-y²+8y=16-4-9
6x-4y+8y=3
6x-4y=3 is a required locus
Actually:
A locus is a curve or other figure formed by all the points satisfying a particular equation of the relation between coordinates, or by a point, line, or surface moving according to mathematically defined conditions.