Answer:
[tex]Minimum = (5,7)[/tex]
No maximum
Step-by-step explanation:
Given
[tex]f(x) = 0.9|-(x - 5)| + 7[/tex]
Solving (a): The minimum
The minimum is when the absolute parameter gives 0
i.e.
[tex]0.9|-(x - 5)| =0[/tex]
Divide both sides by 0.9
[tex]|-(x - 5)| =0[/tex]
Open bracket
[tex]|-x + 5| =0[/tex]
Remove absolute sign
[tex]-x + 5 =0[/tex]
Collect like terms
[tex]x = 5[/tex]
Then the y value is:
[tex]f(x) = 0.9|-(x - 5)| + 7[/tex]
Recall that: [tex]0.9|-(x - 5)| =0[/tex]
So, we have:
[tex]f(x) = 0 + 7[/tex]
[tex]f(x) = 7[/tex]
Hence, the minimum is at: [tex](5,7)[/tex]
Since the minimum is at [tex](5,7)[/tex], then the graph will open upwards.
Hence. the function has no maximum; i.e.
[tex]Maximum = (\infty,\infty)[/tex]