Answer:
cot(x) + sec(x)
Step-by-step explanation:
[tex]\frac{(cos(x)+tan(x))}{sin(x)} \\\\\csc(x) = \frac{1}{sin(x)} \\\\csc(cos(x)+tan(x))\\\\(csc(x))(cos(x))= cot(x)\\\\(csc(x))(tan(x))=sec(x)\\[/tex]
Therefore, the expression equivalent to [tex]\frac{(cos(x)+tan(x))}{sin(x)}[/tex] is cot(x) + sec(x).