An object is pushed from rest across a sheet of ice, accelerating at 8.0 m/s^2 [E] over a displacement of 1.05 m [E]. The object then slides at a constant velocity for 6.0 s until it reaches a rough section that causes the object to stop in 2.5 s.

Respuesta :

Answer:

[tex]D_T=18.567m[/tex]

Explanation:

From the question we are told that:

Acceleration [tex]a=8.0 m/s^2[/tex]

Displacement [tex]d=1.05 m[/tex]

Initial time [tex]t_1=6.0s[/tex]

Final Time [tex]t_2=2.5s[/tex]

Generally the equation for Velocity of 1.05 travel is mathematically given by

Using Newton's Law of Motion

 [tex]V^2=2as[/tex]

 [tex]V=\sqrt{2*6*1.05}[/tex]

 [tex]V=4.1m/s[/tex]

Generally the equation for Distance traveled before stop is mathematically given by

 [tex]d_2=v*t_1[/tex]

 [tex]d_2=3.098*4[/tex]

 [tex]d_2=12.392[/tex]

Generally the equation for Distance to stop is mathematically given by

Since For this Final section

Final velocity [tex]v_3=0 m/s[/tex]

Initial velocity [tex]u_3=4.1 m/s[/tex]

Therefore

Using Newton's Law of Motion

 [tex]-a_3=(4.1)/(2.5)[/tex]

 [tex]-a_3=1.64m/s^2[/tex]

Giving

 [tex]v_3^2=u^2-2ad_3[/tex]

Therefore

 [tex]d_3=\frac{u_3^2}{2ad_3}[/tex]

 [tex]d_3=\frac{4.1^2}{2*1.64}[/tex]

 [tex]d_3=5.125m[/tex]

Generally the Total Distance Traveled is mathematically given by

 [tex]D_T=d_1+d_2+d_3[/tex]

 [tex]D_T=5.125m+12.392+1.05 m[/tex]

 [tex]D_T=18.567m[/tex]