Respuesta :

Answer:

[tex]a.tan(\theta)=\frac{15}{8}[/tex]

[tex]b.csc(\theta)=\frac{17}{15}[/tex]

[tex]d.sec(\theta)=\frac{17}{8}[/tex]

Step-by-step explanation:

The trigonometry functions on a right triangle are given by:

[tex]sin(\theta)=\frac{opposite}{hypotenuse}[/tex]

[tex]csc(\theta)=\frac{hypotenuse}{opposite}[/tex]

[tex]cos(\theta)=\frac{adjacent}{hypotenuse}[/tex]

[tex]sec(\theta)=\frac{hypotenuse}{adjacent}[/tex]

[tex]tan(\theta)=\frac{opposite}{adjacent}[/tex]

[tex]cot(\theta)=\frac{adjacent}{opposite}[/tex]

Let's calculate the adjacent side using pythagorean theorem:

[tex]a^2+b^2=c^2[/tex]

Where:

a=opposite

b=adjacent

c=hypotenuse

The problem provides us a and c because:

[tex]sin(\theta)=\frac{opposite}{hypotenuse}=\frac{15}{17}[/tex]

So:

[tex]15^2+b^2=17^2[/tex]

Solving for b:

[tex]b^2=17^2-15^2\\b^2=289-225\\b^2=64\\b=\sqrt{64} \\b=8[/tex]

Therefore:

a=opposite=15

b=adjacent=8

c=hypotenuse=17

Finally, let's see if the given options are correct:

[tex]a.tan(\theta)=\frac{15}{8}=\frac{opposite}{adjacent}=\frac{15}{8}[/tex] , This is correct.

[tex]b.csc(\theta)=\frac{17}{15}=\frac{adjacent}{hypotenuse}=\frac{17}{15}[/tex] , This is correct.

[tex]c.cot(\theta)=\frac{17}{8}=\frac{adjacent}{opposite}=\frac{8}{15}[/tex] , This is incorrect.

[tex]d.sec(\theta)=\frac{17}{8}=\frac{hypotenuse}{adjacent}=\frac{17}{8}[/tex] , This is correct.

Ver imagen carlos2112