Respuesta :
Answer:
[tex]\boxed {\boxed {\sf m= \frac {-1}{2}}}[/tex]
Step-by-step explanation:
Slope is equal to the change in y over the change in x.
[tex]m= \frac {y_2-y_1}{x_2-x_1}[/tex]
where (x₁, y₁) and (x₂, y₂) are the points the line passes through. We are given the points (-6, 1) and (4, -4). Therefore, if we match the values in the points to the corresponding variables:
- x₁= -6
- y₁= 1
- x₂= 4
- y₂= -4
Substitute the values into the formula.
[tex]m= \frac {-4-1}{4--6}[/tex]
Solve the numerator.
- -4-1= -5
[tex]m= \frac {-5}{4--6}[/tex]
Solve the denominator.
- 4--6= 4+6=1-
[tex]m= \frac{-5}{10}[/tex]
Simplify the fraction. Both the numerator and denominator are divisible by 5.
[tex]m= \frac {-5/5}{10/5}[/tex]
[tex]m= \frac{-1}{2}[/tex]
The slope of the line is -1/2