Respuesta :

Answer:

k = 6

Step-by-step explanation:

To make the expression x² + kxy + 9y² a perfect square, we want it to be in the form (a + b)² for some values of a and b.

Expanding (a + b)², we get:

[tex](a+b)^2=a^2+2ab+b^2[/tex]

Now, we can compare each term of the given expression with the expanded form of a perfect square:

[tex]x^2+kxy+9y^2=a^2+2ab+b^2[/tex]

Compare the first terms:

[tex]x^2=a^2 \implies x=a[/tex]

Compare the last terms:

[tex]9y^2=b^2\implies (3y)^2=b^2 \implies b=3y[/tex]

Compare the middle terms:

[tex]kxy=2ab[/tex]

Substitute in a = x and b = 3y:

[tex]kxy=2(x)(3y)[/tex]

[tex]kxy=6xy[/tex]

    [tex]k=6[/tex]

Therefore, the expression x² + kxy + 9y² becomes a perfect square when:

[tex]\Large\boxed{\boxed{k=6}}[/tex]