Answer:
a) f(g(x)) = [tex]\frac{1}{2(\frac{1}{2x} )}[/tex] = [tex]\frac{1}{\frac{1}{x} } }[/tex] = x
g(f(x)) = [tex]\frac{1}{2(\frac{1}{2x} )}[/tex] = [tex]\frac{1}{\frac{1}{x} } }[/tex] = x
f and g are inverses
b) f(g(x)) = x + 3 + 3 = x + 6
g(f(x)) = x + 3 + 3 = x + 6
f and g are not inverses
Step-by-step explanation:
a)
f(g(x)) = [tex]\frac{1}{2(\frac{1}{2x} )}[/tex] = [tex]\frac{1}{\frac{1}{x} } }[/tex] = x
g(f(x)) = [tex]\frac{1}{2(\frac{1}{2x} )}[/tex] = [tex]\frac{1}{\frac{1}{x} } }[/tex] = x
Since f(g(x)) = g(f(x)) = x, then f and g are inverses
b)
f(g(x)) = x + 3 + 3 = x + 6
g(f(x)) = x + 3 + 3 = x + 6
Since f(g(x)) = g(f(x)) ≠ x, then f and g are not inverses