Respuesta :
Answer:
Step-by-step explanation:
Arc length=∅/360×2πr (can't find the symbol of theta, use ∅ instead LOL)
[tex]\frac{\theta }{360}\cdot 2\pi \left(11\right)=16[/tex]
[tex]\frac{\theta }{360}=\frac{16}{22\pi }[/tex]
[tex]\theta \:=\frac{16}{22\pi \:}\cdot 360[/tex]
[tex]{\theta}=83.34[/tex]
Answer:
≈ 1.5 radians
Step-by-step explanation:
The arc length is calculated as
arc = circumference of circle × fraction of circle
Here arc = 16 , then
2πr × [tex]\frac{0}{2\pi }[/tex] = 16 ← cancel the 2π on numerator/denominator
11 ×θ = 16 ( divide both sides by 11 )
θ ≈ 1.5 radians ( to the nearest tenth )