Respuesta :

Answer:

Step-by-step explanation:

Arc length=∅/360×2πr (can't find the symbol of theta, use ∅ instead LOL)

[tex]\frac{\theta }{360}\cdot 2\pi \left(11\right)=16[/tex]

[tex]\frac{\theta }{360}=\frac{16}{22\pi }[/tex]

[tex]\theta \:=\frac{16}{22\pi \:}\cdot 360[/tex]

[tex]{\theta}=83.34[/tex]

Answer:

≈ 1.5 radians

Step-by-step explanation:

The arc length is calculated as

arc = circumference of circle × fraction of circle

Here arc = 16 , then

2πr × [tex]\frac{0}{2\pi }[/tex] = 16 ← cancel the 2π on numerator/denominator

11 ×θ = 16 ( divide both sides by 11 )

θ ≈ 1.5 radians ( to the nearest tenth )