Answer:
221 lines per millimetre
Explanation:
We know that for a diffraction grating, dsinθ =mλ where d = spacing between grating, θ = angle to maximum, m = order of maximum and λ = wavelength of light.
Since the grating is 42.0 cm from the screen and its first order maximum (m = 1) is at 6.09 cm from the center of the pattern,
tanθ = 6.09 cm/42.0 cm = 0.145
From trig ratios, cot²θ + 1 = cosec²θ
cosecθ = √((1/tanθ)² + 1) = √((1/0.145)² + 1) = √48.562 = 6.969
sinθ = 1/cosecθ = 1/6.969 = 0.1435
Also, sinθ = mλ/d at the first-order maximum, m = 1. So
sinθ = (1)λ/d = λ/d
Equating both expressions we have
0.1435 = λ/d
d = λ/0.1435
Now, λ = 650 nm = 650 × 10⁻⁹ m
d = 650 × 10⁻⁹ m/0.1435
d = 4529.62 × 10⁻⁹ m per line
d = 4.52962 × 10⁻⁶ m per line
d = 0.00452962 × 10⁻³ m per line
d = 0.00452962 mm per line
Since d = width of grating/number of lines of grating
Then number of lines per millimetre = 1/grating spacing
= 1/0.00452962
= 220.77 lines per millimetre
≅ 221 lines per millimetre since we can only have a whole number of lines.