Answer:
[tex]\overline{PM}\cong\overline{ON}[/tex]: Reason; Corresponding parts of congruent triangles ΔOMN and ΔOMP are congruent (CPCTC)
Step-by-step explanation:
1) MNOP is a parallelogram: Reason; Given
2) [tex]\overline{PM}\left | \right |\overline{ON}[/tex]: Reason; Definition of a parallelogram
3) ∠MON ≅ ∠PMO: Reason; Alternate Int. ∠s Thm.
4) [tex]\overline{MN}\left | \right |\overline{PO}[/tex]: Reason; Definition of a parallelogram
5) ∠NMO ≅ ∠POM: Reason; Alternate Int. ∠s Thm.
6) [tex]\overline{OM}\cong\overline{OM}[/tex]: Reason; Reflexive property
7) ΔOMN ≅ ΔOMP: Reason; Angle Angle Side (AAS) congruency theorem
8) [tex]\overline{PM}\cong\overline{ON}[/tex]: Reason; Corresponding parts of congruent triangles are congruent (CPCTC).
Also we have;
9) [tex]\overline{PM}\cong\overline{ON}[/tex]: Reason; Segment opposite congruent angles are congruent