Answer:
- [tex]AgBr(s)+2NH_3(aq)\rightleftharpoons Ag(NH_3)_2^+(aq)+Br^-(aq)[/tex]
- [tex]K=1.2x10^{-5}[/tex]
Explanation:
Hello,
In this case, by considering the dissolution of silver bromide:
[tex]AgBr(s)\rightleftharpoons Ag^+(aq)+Br^-(aq) \ \ \ Ksp=[Ag^+][Br^-]=7.7x10^{-13}[/tex]
And the formation of the complex:
[tex]Ag^+(aq)+2NH_3(aq)\rightleftharpoons Ag(NH_3)_2^+(aq)\ \ \ Kf=\frac{[Ag(NH_3)_2^+]}{[Ag^+][NH_3]^2}=1.6x10^7[/tex]
We obtain the balanced net ionic equation by adding the aforementioned equations:
[tex]AgBr(s)+Ag^+(aq)+2NH_3(aq)\rightleftharpoons Ag(NH_3)_2^+(aq)+Br^-(aq)+Ag^+(aq)\\\\AgBr(s)+2NH_3(aq)\rightleftharpoons Ag(NH_3)_2^+(aq)+Br^-(aq)[/tex]
Now, the equilibrium constant is obtained by writing the law of mass action for the non-simplified net ionic equation:
[tex]AgBr(s)+Ag^+(aq)+2NH_3(aq)\rightleftharpoons Ag(NH_3)_2^+(aq)+Br^-+Ag^+\\\\K=[Ag^+][Br^-]*\frac{[Ag(NH_3)_2^+]}{[Ag^+][NH_3]^2}[/tex]
So we notice that the equilibrium constant contains the solubility constant and formation constant for the initial reactions:
[tex]K=Ksp*Kf=7.7x10^{-13}*1.6x10^{7}\\\\K=1.2x10^{-5}[/tex]
Best regards.