Respuesta :

Hello!

Answer:

[tex]\boxed{ \bf The~radius~of~the~sphere~is~6~mm.}[/tex]

Explanation:

We know that:

V = [tex]\frac{4}{3}[/tex]πr³

904.32 = [tex]\frac{4}{3}[/tex]πr³

To figure out the radius, we have to undo the above. We can undo the fraction by multiplying by it's reciprocal:

[tex]\frac{3}{4}[/tex] × [tex]\frac{904.32}{1}[/tex] = [tex]\frac{4}{3}[/tex]πr³ × [tex]\frac{3}{4}[/tex]

678.24 =  πr³

Next, we're going to divide both sides by pi:

[tex]\frac{678.24}{\pi } = \frac{\pi r^{2} }{\pi }[/tex]

215.90 = r³

To undo the, we must find the cube root of 215.90.

r = 6

Hi1315

Answer:

[tex]radius = 6mm[/tex]

Step-by-step explanation:

Volume of a sphere.

Use this formula

[tex]v = \frac{4}{3} \pi {r}^{3} [/tex]

Now solve for r

[tex]r = (3 \frac{v}{4\pi} ) ^{ \frac{1}{3} } \\ = (3 \times \frac{904.32}{4 \times \pi} ) ^{ \frac{1}{3} } \\ ≈

5.99899mm

[/tex]