Respuesta :
Hello!
Answer:
[tex]\boxed{ \bf The~radius~of~the~sphere~is~6~mm.}[/tex]
Explanation:
We know that:
V = [tex]\frac{4}{3}[/tex]πr³
904.32 = [tex]\frac{4}{3}[/tex]πr³
To figure out the radius, we have to undo the above. We can undo the fraction by multiplying by it's reciprocal:
[tex]\frac{3}{4}[/tex] × [tex]\frac{904.32}{1}[/tex] = [tex]\frac{4}{3}[/tex]πr³ × [tex]\frac{3}{4}[/tex]
678.24 = πr³
Next, we're going to divide both sides by pi:
[tex]\frac{678.24}{\pi } = \frac{\pi r^{2} }{\pi }[/tex]
215.90 = r³
To undo the, we must find the cube root of 215.90.
r = 6
Answer:
[tex]radius = 6mm[/tex]
Step-by-step explanation:
Volume of a sphere.
Use this formula
[tex]v = \frac{4}{3} \pi {r}^{3} [/tex]
Now solve for r
[tex]r = (3 \frac{v}{4\pi} ) ^{ \frac{1}{3} } \\ = (3 \times \frac{904.32}{4 \times \pi} ) ^{ \frac{1}{3} } \\ ≈
5.99899mm
[/tex]