Respuesta :
Answer:
The power output of the star is 2.215x10²⁸W
Explanation:
Given data:
ms = mass of the star = 35.135 times msun
rp = radius = 0.935 mm = 9.35x10⁻⁴m
p = 3.46 μg = 3.46x10⁻⁹g
msun = mass of the Sun = 1.99x10³⁰kg
G = gravitational constant = 6.67x10⁻¹¹m³/kg s²
c = speed of light = 3x10⁸m/s
Question: What power ouput would a star, P = ?
First, calculate the mass of the star:
[tex]m_{s} =35.135*1.99x10^{30} =6.992x10^{31}kg[/tex]
The power output of the star:
[tex]P=\frac{Gm_{s}*p*4c }{r^{2} } =\frac{6.67x10^{-11}*6.992x10^{31}*3.46x10^{-9}*4*3x10^{8}}{(9.35x10^{-4})^{2} } =2.215x10^{28}W[/tex]
The power output of a star with the given mass is [tex]2.53 \times 10^{28} \ W[/tex].
The given parameters;
- mass of the sun, m = 1.99 x 10³⁰ kg
- gravitational constant, G = 6.67 x 10⁻¹¹ kg
- radius of the dust particle, rp = 0.935 mm
The power output of a star is calculated as follows;
[tex]P = \frac{GMp \times (4c)}{r^2}[/tex]
where;
M is the mass of the star
c is speed of light
The mass of the star is calculated as follows;
[tex]M = 35.135 \times 1.99 \times 10^{30}\\\\M = 6.99 \times 10^{31} \ kg[/tex]
[tex]P = \frac{6.67 \times 10^{-11} \times 6.99 \times 10^{31} \times 3.96 \times 10^{-9} \times 4 \times 3\times 10^8}{(0.935 \times 10^{-3})^2} \\\\P = 2.53 \times 10^{28} \ W[/tex]
Thus, the power output of a star with the given mass is [tex]2.53 \times 10^{28} \ W[/tex].
Learn more here:https://brainly.com/question/15792465