(AMC8, 2000) The area of rectangle ABCD is 72. If point A and the midpoints of BC and CD are joined to form triangle, the area of that triangle is: A: 21, B: 27, C: 30, D: 36, E: 40


Its a multiple choice question

Respuesta :

Answer:

B: 27

Step-by-step explanation:

See the attached diagram.

Here, area of Δ AEF = area of ABCD - area of Δ ABE - area of Δ ADF - area of Δ ECF

⇒ area of Δ AEF = [tex]WL - \frac{1}{2} \times L \times \frac{W}{2} - \frac{1}{2} \times W\times \frac{L}{2} - \frac{1}{2} \times \frac{L}{2} \times \frac{W}{2}[/tex]

= [tex]WL - \frac{WL}{4} - \frac{WL}{4} - \frac{WL}{8}[/tex]

= [tex]\frac{3WL}{8}[/tex]

= [tex]\frac{3}{8}\times (72)[/tex] {Since the area of the rectangle WL is given to be 72}

= 27 (Answer)

Ver imagen rani01654