Answer:
B: 27
Step-by-step explanation:
See the attached diagram.
Here, area of Δ AEF = area of ABCD - area of Δ ABE - area of Δ ADF - area of Δ ECF
⇒ area of Δ AEF = [tex]WL - \frac{1}{2} \times L \times \frac{W}{2} - \frac{1}{2} \times W\times \frac{L}{2} - \frac{1}{2} \times \frac{L}{2} \times \frac{W}{2}[/tex]
= [tex]WL - \frac{WL}{4} - \frac{WL}{4} - \frac{WL}{8}[/tex]
= [tex]\frac{3WL}{8}[/tex]
= [tex]\frac{3}{8}\times (72)[/tex] {Since the area of the rectangle WL is given to be 72}
= 27 (Answer)