Oppenheimer Bank is offering a 30​-year mortgage with an APR of 4.78 % based on monthly compounding. With this mortgage your monthly payments would be $ 2 comma 006 per month. In​ addition, Oppenheimer Bank offers you the following​ deal: Instead of making the monthly payment of $ 2 comma 006 every​ month, you can make half the payment every two weeks​ (so that you will make 52 divided by 2 equals 26 payments per​ year). With this​ plan, how long will it take to pay off the mortgage if the EAR of the loan is​ unchanged? Note: Make sure to round all intermediate calculations to at least 8 decimal places.

Respuesta :

Answer:

It will take the same amount of time. 30 years.

Explanation:

First we need to know the mortgage value:

[tex]C \times \frac{1-(1+r)^{-time} }{rate} = PV\\[/tex]

monthly payment 2,006

time 360 (30 years x 12 months)

rate 0.003983333 (4.78%/12 months)

[tex]2006 \times \frac{1-(1+0.00398333333333333)^{-360} }{0.00398333333333333} = PV\\[/tex]

PV $383,221.4489

Then we solve for n if we make the payment twice as fast:

[tex]C \times \frac{1-(1+r)^{-time} }{rate} = PV\\[/tex]

C  $1,003.00

time n

rate 0.001991667 (4.78%/12 months / 2 payment per month)

PV $383,221.4489

As we are asked not to round up we post the full numbers

[tex]1003 \times \frac{1-(1+0.00199166666666667)^{-n} }{0.00199166666666667} = 383221.448870618\\[/tex]

[tex](1+0.00199166666666667)^{-n}= 1-\frac{383221.448870618\times0.00199166666666667}{1003}[/tex]

 

[tex]-n= \frac{log0.239033513791311}{log(1+0.00199166666666667)}[/tex]

-719.2851352

it will take 720 half month so:

720 / 2 = 360 months

360 monht 7 12 month per year = 30 years

It will take the same amount of time.