Answer:
the generator induced voltage is 60.59 kV
Explanation:
Given:
S = 150 MVA
Vline = 24 kV = 24000 V
[tex]X_{s} =1.23(\frac{V_{line}^{2} }{s} )=1.23\frac{24000^{2} }{1500} =4723.2 ohms[/tex]
the network voltage phase is
[tex]V_{phase} =\frac{V_{nline} }{\sqrt{3} } =\frac{27}{\sqrt{3} } =15.58kV[/tex]
the power transmitted is equal to:
[tex]|E|=\frac{P*X_{s} }{3*|V_{phase}|sinO } ;if-O=60\\|E|=\frac{300*4.723}{3*15.58*sin60} =34.98kV[/tex]
the line induced voltage is
[tex]|E_{line} |=\sqrt{3} *|E|=\sqrt{3} *34.98=60.59kV[/tex]