Answer:
8.46 N/C
Explanation:
Using Gauss law
[tex]E=\frac {kQ}{r^{2}}[/tex]
Gauss's Law states that the electric flux through a surface is proportional to the net charge in the surface, and that the electric field E of a point charge Q at a distance r from the charge
Here, K is Coulomb's constant whose value is [tex]9\times 10^{9} Nm^{2}/C^{2}[/tex]
r = 0.43 + 0.106 = 0.536 m
[tex]E=\frac {9\times 10^{9}\times 0.270\times 10^{-9}}{0.536^{2}}=8.4581755402094007\approx 8.46 N/C[/tex]