Answer:
[tex]y = \dfrac{875}{6}[/tex]
Step-by-step explanation:
We use the PEMDAS rule, meaning the order of priority is parenthesis, Multiplication, Division, Addition, and Subtraction.
With PEMDAS, let us simply the equation
[tex]0.9+[[3.25-(6+9/16-0.025y)*0.6]\div 0.75] \div 6 \dfrac{2}{3} =1.2[/tex]
First let us simplify the parenthesis [tex]()[/tex] and get:
[tex]0.9+[[3.25-(6.5625-0.025y)*0.6]\div 0.75] \div 6 \dfrac{2}{3} =1.2[/tex]
and multiply what is in [tex]()[/tex] by [tex]-1[/tex] and [tex]0.6[/tex] to get:
[tex]0.9+[[3.25-3.9375+0.015y]\div 0.75] \div 6 \dfrac{2}{3} =1.2[/tex]
[tex]0.9+[[-0.6875+0.015y]\div 0.75] \div 6 \dfrac{2}{3} =1.2[/tex]
Now we divide what is in [tex][][/tex] by 0.75 to get:
[tex]0.9+[-0.91667+0.02y] \div 6 \dfrac{2}{3} =1.2[/tex]
and we divide [tex][][/tex] by [tex]6 \dfrac{2}{3}[/tex] and get:
[tex]0.9-\dfrac{11}{80} +\dfrac{3}{1000}y =1.2[/tex]
simplifying gives us
[tex]\dfrac{61}{80} +\dfrac{3}{1000}y =1.2[/tex]
[tex]\dfrac{3}{100}y =\dfrac{7}{16}[/tex]
[tex]\boxed{y = \dfrac{875}{6} }[/tex]