Respuesta :

8320 cubes can fit into the prism.

Solution:

Convert mixed fraction into improper fraction.

Length of the prism = 20 in

Width of the prism = 2 in

Height of the prism = [tex]3\frac{1}{4}=\frac{13}{4}[/tex] in

Volume of the prism = length × width × height

                                 [tex]$=20\times2\times\frac{13}{4}[/tex]

                                 = 130 in³

Volume of the prism = 130 in³

Length of the cube = [tex]\frac{1}{4}[/tex] in

Volume of the cube = length × length × length

                                 [tex]$=\frac{1}{4} \times\frac{1}{4} \times\frac{1}{4}[/tex]

                                 [tex]$=\frac{1}{64} \ \text{in}^3[/tex]

Volume of the cube = 0.015625 in³

[tex]$\text{Number of cubes}=\frac{\text{Volume of the prism}}{\text{Volume of cube}}[/tex]      

                            [tex]$=\frac{130}{0.015625}[/tex]

                            = 8320

Number of cubes = 8320

Hence 8320 cubes can fit into the prism.