Solution:
Given system of equations are:
[tex]\frac{1}{4}x + \frac{1}{8}y =2 ---------- eqn\ 1\\\\\frac{1}{3}x + \frac{1}{2}y = 4 -------------- eqn\ 2[/tex]
We have to find value of y
From eqn 1,
[tex]\frac{1}{4}x + \frac{1}{8}y =2 \\\\2x + y = 2 \times 8\\\\2x + y = 16 ---- eqn\ 3[/tex]
From eqn 2,
[tex]\frac{1}{3}x + \frac{1}{2}y = 4\\\\2x + 3y = 4 \times 6\\\\2x + 3y = 24 ------ eqn\ 4[/tex]
Subtract eqn 3 from eqn 4
2x + 3y = 24
2x + y = 16
( - ) -----------------
2y = 8
y = 4
Thus value of y is 4