x^3y ''' + 10x^2y '' + 16xy ' − 16y = 0; x, x^−4, x^−4 ln x, (0, [infinity])

Verify that the given functions form a fundamental set of solutions of the differential equation on the indicated interval.

The functions satisfy the differential equation and are linearly independent since

W(x, x−4, x−4 ln x) =_____________ ≠ 0 for 0 < x < [infinity].


Form the general solution.

y=______________________

Respuesta :

Verifying that a solution satisifes the ODE is a matter of substituting the solution into the ODE. For example,

[tex]y_1=x\implies{y_1}'=1\implies{y_1}''={y_1}'''=0[/tex]

[tex]x^3{y_1}'''+10x^2{y_1}''+16x{y_1}'-16{y_1}=16x-16x=0[/tex]

The Wronskian for these solutions is

[tex]W(x,x^{-4},x^{-4}\ln x)=\begin{vmatrix}x&x^{-4}&x^{-4}\ln x\\1&-4x^{-5}&x^{-5}(1-4\ln x)\\0&20x^{-6}&-x^{-6}(9-20\ln x)\end{vmatrix}=25x^{-10}[/tex]

which is non-zero for all [tex]x\in(0,\infty)[/tex], so the solutions are indeed linearly independent.

The general solution is then

[tex]y=C_1x+C_2x^{-4}+C_3x^{-4}\ln x[/tex]