Respuesta :

Answer:

The values of a and b are a=3 and b=3.

Step-by-step explanation:

Given fractional equation is [tex]\frac{(2xy)^4}{4xy}=4x^ay^b[/tex]

To find the values of   a and b to make given equation true :

[tex]\frac{(2xy)^4}{4xy}=4x^ay^b[/tex]

Take LHS [tex]\frac{(2xy)^4}{4xy}[/tex]

[tex]=\frac{2^4x^4y^4}{4xy}[/tex] ( using the property [tex](ab)^m=a^mb^m[/tex] )

[tex]=\frac{16x^4y^4}{4xy}[/tex]

[tex]=4x^4y^4x^{-1}y^{-1}[/tex] ( using the property [tex]\frac{1}{a^m}=a^{-m}[/tex] )

[tex]=4x^{4-1}y^{4-1}[/tex] ( using the property [tex]a^m.a^n=a^{m+n}[/tex] )

[tex]=4x^3y^3[/tex]

[tex]\frac{(2xy)^4}{4xy}=4x^3y^3[/tex]

Comparing with [tex]\frac{(2xy)^4}{4xy}=4x^ay^b=4x^3y^3[/tex]

Therefore [tex]4x^ay^b=4x^3y^3[/tex]

Therefore the values of a and b are a=3 and b=3

saryul

Answer:

B

Step-by-step explanation:

for edge