Respuesta :

Answer:

From the functions f(x) and g(x) we have [tex](g\circ f)(x)=\frac{7(x+1)}{3x-2}[/tex]

Step-by-step explanation:

Given that the functions f is defined by [tex]f(x)=\frac{2x+1}{3x-2}[/tex]

and g is [tex]g(x)=5x-1[/tex]

To find the [tex](g\circ f)(x)[/tex] :

[tex](g\circ f)(x)=g(f(x))[/tex]

[tex]=g(\frac{2x+1}{3x-2})[/tex]

[tex]=5(\frac{2x+1}{3x-2})-1[/tex]

[tex]=\frac{10x+5}{3x-2}-1[/tex]

[tex]=\frac{10x+5-1(3x-2)}{3x-2}[/tex] ( by using the distributive property )

[tex]=\frac{10x+5-3x+2}{3x-2}[/tex]

[tex]=\frac{7x+7}{3x-2}[/tex] ( adding the like terms )

[tex]=\frac{7(x+1)}{3x-2}[/tex]

Therefore [tex](g\circ f)(x)=\frac{7(x+1)}{3x-2}[/tex].