Answer:
[tex]v=\pm27.06[/tex]
Explanation:
Given expression:
[tex]2140=\frac{(905)(v^2)}{3.25}[/tex]
To solve for the unknown [tex]v[/tex].
Solution:
To solve the equation, we will isolate [tex]v[/tex] on one side.
We have:
[tex]2140=\frac{(905)(v^2)}{3.25}[/tex]
Multiplying 3.25 both sides.
[tex]3.25\times 2140=\frac{(905)(v^2)}{3.25}. 3.25[/tex]
[tex]6955=905v^2[/tex]
Dividing both sides by 905.
[tex]\frac{6955}{905}=\frac{905v^2}{905}[/tex]
[tex]732.11=v^2[/tex]
Taking square root both sides.
[tex]\sqrt{732.11}=\sqrt{v^2}[/tex]
[tex]\pm27.06=v[/tex]
∴ [tex]v=\pm27.06[/tex] (Answer)