Respuesta :
Answer:
The correct approach is "0.39".
Explanation:
The given values are:
Low risk percentage,
= 25%
i.e.,
= 0.25
High risk percentage,
= 30%
i.e.,
= 0.30
Now,
The medium risk percentage will be:
= [tex]1-(low+high)[/tex]
= [tex]1-(0.25+0.30)[/tex]
= [tex]1-0.55[/tex]
= [tex]0.45[/tex]
Should let probability of either an assertion by a low-risk policyholder be p,
Percentage of medium risk policyholder will be,
= 2p
Percentage of high risk policyholder will be,
= 3×2p
= 6p
By applying Bayes' theorem, we get
⇒ [tex]P(A | B) = \frac{P(A \$ B)}{P(B)}[/tex]
⇒ [tex]=\frac{(0.25p + 0.45\times 2p)}{(0.25p + 0.45\times 2p + 0.30\times 6p)}[/tex]
⇒ [tex]=\frac{1.15}{2.95}[/tex]
⇒ [tex]=0.39[/tex]