Respuesta :
Answer:
[tex]\mu_{p_E -p_H} = 0.4-0.6 =-0.2[/tex]
[tex]SE_{p_E -p_H}=\sqrt{\frac{0.4(1-0.4)}{20} +\frac{0.6 (1-0.6)}{20}}=0.1549[/tex]
b. Normal with mean μ= -0.2 and standard deviation σ=0.1549
Step-by-step explanation:
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
[tex]p_E[/tex] represent the real population proportion for Engineering
[tex]\hat p_E =\frac{8}{20}=0.4[/tex] represent the estimated proportion for Engineering
[tex]n_E=20[/tex] is the sample size required for Engineering
[tex]p_H[/tex] represent the real population proportion for Humanities
[tex]\hat p_H =\frac{12}{20}=0.6[/tex] represent the estimated proportion for Humanities
[tex]n_H=20[/tex] is the sample size required for Humanities
We assume that the population proportions follows a normal distribution since we satisfy these conditions:
[tex]np\geq 5[/tex] ,[tex]n(1-p)\geq 5[/tex]
[tex]20*0.4= 8\geq 5 , 20(1-0.4)=12\geq 5[/tex]
The population proportion have the following distribution
[tex]p \sim N(p,\sqrt{\frac{p(1-p)}{n}})[/tex]
And we are interested on the distribution for [tex]p_E-p_H[/tex]
For this case we know that the distribution for the differences of proportions is also normal and given by:
[tex]p_E -p_H \sim N(\hat p_E -\hat p_H, \sqrt{\frac{\hat p_E(1-\hat p_E)}{n_E} +\frac{\hat p_H (1-\hat p_H)}{n_H}}[/tex]
So then we can find the mean and the deviation like this:
[tex]\mu_{p_E -p_H} = 0.4-0.6 =-0.2[/tex]
[tex]SE_{p_E -p_H}=\sqrt{\frac{0.4(1-0.4)}{20} +\frac{0.6 (1-0.6)}{20}}=0.1549[/tex]
So then the best option is :
b. Normal with mean μ= -0.2 and standard deviation σ=0.1549
The shape is unknown since there is no knowledge about it and the representative sample is limited.
Given that;
Total number of interview in engineering and humanities = 20
Number of interview in engineering = 8
Number of interview in humanities = 12
Computation:
⇒ Probability of interview in engineering - Probability of interview in humanities
⇒ 8/20 - 12/20
⇒ -0.20
The shape is unknown since there is no knowledge about it and the representative sample is limited.
Therefore, Option D is the right answer.
Learn more:
https://brainly.com/question/14391810?referrer=searchResults