Respuesta :
In the right triangle PQR:
Hypotenuse: QR = QN + NR = 12 + 6 = 18 cm
PN² = QN · NR
PN² = 12 · 6 = 72
PN = √72 = √(36 · 2 ) = 6√2 cm
PQ² = (6√2)² + 12² = 72 + 144 = 216
PQ = √216 = √(36 · 6 ) = 6√6 cm
PR² = 18² - (6√6)² = 324 - 216 = 108
PR = √108 = √(36 · 3) = 6√3 cm
Answer:
PN = 6√2 cm,
PQ = 6√6 cm,
PR = 6√3 cm.
Hypotenuse: QR = QN + NR = 12 + 6 = 18 cm
PN² = QN · NR
PN² = 12 · 6 = 72
PN = √72 = √(36 · 2 ) = 6√2 cm
PQ² = (6√2)² + 12² = 72 + 144 = 216
PQ = √216 = √(36 · 6 ) = 6√6 cm
PR² = 18² - (6√6)² = 324 - 216 = 108
PR = √108 = √(36 · 3) = 6√3 cm
Answer:
PN = 6√2 cm,
PQ = 6√6 cm,
PR = 6√3 cm.
Answer:
PN = 6√2 in
PQ = 6√6 in
PR = 6√3 in
Step-by-step explanation:
Please see the attached image where the triangle and the known values are labeled.
From Right triangle altitude theorem, we have
[tex]PN=\sqrt{QN\cdot NR}\\PN=\sqrt{12\cdot6}\\PN=6\sqrt2[/tex]
Now, in right angle triangle PNQ
[tex]PQ=\sqrt{(6\sqrt2)^2+12^2}\\PQ=\sqrt{72+144}\\PQ=\sqrt{216}\\PQ=6\sqrt6[/tex]
Similarly, in triangle PNR,
[tex]PR=\sqrt{(6\sqrt2)^2+6^2}\\PQ=\sqrt{72+36}\\PQ=\sqrt{108}\\PQ=6\sqrt3[/tex]
Therefore, we have
PN = 6√2 in
PQ = 6√6 in
PR = 6√3 in