contestada

The nearest known exoplanets (planets beyond the solar system) are around 20 light-years away. What would have to be the minimum diameter of an optical telescope to resolve a Jupiter-sized planet at that distance using light of wavelength 600 nm? (Express your answer to two significant figures.)

Respuesta :

To solve the problem, it is necessary to apply the concepts related to the diffraction given in circular spaces. By definition it is expressed as

[tex]\Delta \theta = 1.22\frac{\lambda}{d}[/tex]

Where,

\lambda = Wavelength

d = Optical Diameter

[tex]\theta =[/tex] Angular resolution

In turn you can calculate the angle through the diameter and the arc length, that is,

[tex]\Delta \theta = \frac{x}{D}[/tex]

Where,

x = The length of the arc

D = Distance

From known data we know that Jupiter's diameter is,

[tex]x_J = 1.43*10^8m[/tex]

[tex]D = 20*9.4608*10^{15}[/tex]

[tex]\lambda = 600*10^{-9}m[/tex]

Replacing we have that,

[tex]\frac{x}{D} = 1.22\frac{\lambda}{d}[/tex]

[tex]\frac{1.43*10^8}{20*9.4608*10^{15} } = 1.22\frac{600*10^{-9}}{d}[/tex]

Re-arrange to find d,

[tex]d = 968.5m = 0.968Km[/tex]

Therefore the minimum diameter of an optical telescope to resolve a Jupiter-sized planet is 0.968Km.